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by electron transfer) to form a radical pair (Pt'-X + R-). 
This pair can either collapse to the regular adduct6 or dif­
fusively separate to form Pt'-X and R-. Depending on the 
reactivity of the reactant alkyl halide, two pathways may 
then develop. For very reactive halides (as are described in 
this communication), Pt'-X can rapidly abstract further 
halide to yield dihalide and organic radical. CIDNP effects 
result from the diffusive encounter of these product radi­
cals. Alternatively, for less reactive halides, the organic rad­
ical will initiate a chain process to produce regular adduct 
(and/or hydrido complex). 

In the reaction of isopropyl iodide with la, the chain pro­
cess (kb) to form hydrido complex and the abstraction pro­
cess (ka) to form diiodo complex are competitive. For iso­
propyl bromide, however, the chain mechanism dominates,' 
as might be expected since in terms of bond strength, C-Br 
» C-I. 

Regular adduct formation in the reaction of benzyl bro­
mide with la could arise in two possible ways: (a) via the 
S N 2 process and (b) by radical pair collapse (kc). However, 
4a is also formed and if its formation were competitive with 
the collapse mechanism, the product ratio should be depen­
dent on solvent viscosity15 (kd will decrease with respect to 
kc as viscosity increases). However, we find that changing 
the solvent from benzene to tert- butylbenzene (a viscosity 
increase of ca. 45-fold) leads to no significant change in 
product ratio. This observation suggests that trans-
Pt(CH2C6H5)Br(PEt3), is not formed by path b. In this 
case, a competition between an S N 2 process (to form regu­
lar adduct) and a radical abstraction process (to produce di-
bromide) is indicated. For the reaction of benzyl chloride 
with la, only the SN2 path is operative because in compar­
ing RCl vs. RBr reactivities, CI/Br ~ 1O-2 for a nucleo-
philic displacement, whereas for a radical abstraction pro­
cess CI/Br ~ 1O-4. The radical process would then become 
noncompetitive for benzyl chloride. 

A further example concerns a-haloester additions to la. 
Using ethyl a-chloropropionate, the regular adduct is clean­
ly produced and occurs via a radical chain process.' In the 
corresponding a-bromoester reaction with la, both regular 
adduct and dibromide are produced.16 However, only the 
regular adduct formation is inhibited by the presence of 5 
mol % duroquinone. It appears here that the radical chain 
and abstraction processes are competitive, but the SN2 pro­
cess is not. 

Summarizing, several possible routes exist for these reac­
tions, and the choice of a particular path will depend on 
many factors, e.g., the nature of the carbon-halogen link­
age, the nucleophilicity of the metal complex, the ability of 
the metal complex to undergo one-electron processes (i.e., 
relative positioning of oxidation levels and availability of 
suitable mechanisms for one-electron transfer), steric ef­
fects, and ligand exchange processes. A subtle balance of 
these factors will direct which path (if any) dominates the 
oxidative addition process. 
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On the High-Spin-Low-Spin Equilibrium of 
Manganocene and Dimethylmanganocene 

Sir: 

Investigations concerning the nature of the electronic 
ground state of manganocene, Mn(Cp)2, have been per­
formed for more than 20 years. '~12 Among the metallocene 
series, Mn(cp)2 is of particular interest, because both high-
spin, aig'e2g2eig

2(6Aig), and low-spin, a]g
2e2g

3(2E2g) or 
aig'e2g4(2Aig), configurations could be realized in the 
ground state, depending on the magnitude of the axial lig­
and field splittings Ds and D t.

8"12 In the fifties magnetic 
susceptibility (xm) measurements,'~4 chemical evidence,'~5 

and esr results7 led to the conclusion that both Mn(cp)2 and 
related 1,1'-dimethylmanganocene, Mn(mecp)2, were "es­
sentially ionic (S* = 5/2) cyclopentadienides" in liquid and 
solid solutions as well as in pure solid state, in spite of some 
difficulties encountered in the interpretation of the anomal­
ously small Xm found in the pure solids at low temperatures. 
It was therefore somewhat surprising when in 1972 Raba-
lais, et a/.," reported a HeI photoelectron spectrum as­
cribed to gaseous Mn(cp)2 possessing a e2g

4aig'(2Aig) 
ground state configuration. This interpretation was, how­
ever, criticized by Evans, et al.'2 The Oxford group12 re­
cently measured the HeI photoelectron spectra of both 
Mn(cp)2 and Mn(mecp)2, and using ligand field theoretical 
arguments came to the conclusion that gaseous Mn(cp)2 is 
essentially a high-spin (6A]8) complex, while Mn(mecp)2 
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Table I. Magnetic Parameters and Derived Quantities for Low-Spin Mn(cp)2 and Mn(mecp)2 at 4.20K 

Molecule Host lattice g± A \ \ a A jf kvVv • (cm-1)' 

Mn(Cp)2 

Mn(cp)2 
Mn(mecp)2 
Mn(mecp)2 

Fe(Cp)2 
Ru(cp)2 
Mg(mecp)2 
Fe(mecp)2 

3.519(4) 
3.562 (4) 
3.00(2) 
3.06(2) 

1.222(10) 
1.031 (20) 
1.889(2) 
1.850(2) 

52.3(0 .6) 
58.7(0.7) 
13.7(1.5) 
11.4(3.0) 

<26<* 
<70 d 

24.6 (2.OY 
24.5(2 .0) 

0.48 
0.46 
0.75 
0.69 

200 
170 
740 
630 

" 55Mn hyperfine parameters in units of 10-4 era'1. b Calculated from g values via eq 2. c Low symmetry distortion parameter, calculated 
from ,if values and eq 1, assuming f = 260cm"1.d Not resolved at 4.20K; estimated from line widths.e Indications for Ax ^ A11 present. 

Figure 1. (a) X-Band esr spectrum of Mn(cp)2 diluted in polycrystal-
line Mg(cp)2 at 4.20K. The signal amplitude of part B has been multi­
plied by a factor of 6 relative to part A. (b) X-Band esr spectrum of 
Mn(mecph diluted in polycrystalline Mg(mecpb at 4.20K. 55Mn hfs 
splittings (A i and A ± ) are indicated with stick diagrams. 

vapour exists as a mixture of comparable amounts of low-
spin and high-spin configurations. 

In view of this controversy, it seemed worthwhile to rein­
vestigate the neutral d5 metallocenes by esr. In this commu­
nication we show that both Mn(cp)2 and Mn(mecp)2 can be 
found in high-spin (6A t g) as well as in low-spin (2E2g) 
ground states, depending on the molecular environment. 
We have investigated polycrystalline samples of both com­
pounds undiluted and diluted in several diamagnetic host 
systems (organic solvents and isostructural sandwich com­
plexes) by electron spin resonance (esr) at various tempera­
tures between 4.2 and 3000K. The X-band esr spectrum of 
Mn(cp)2 diluted in Mg(cp)2 showing hyperfine structure 
attributable to the 55Mn nucleus (A « 65 G) at liquid heli­
um temperature is shown in Figure la. This spectrum is 
somewhat dependent on temperature and can be considered 
typical for a high-spin d5 system exhibiting zero field split­
tings of the same order of magnitude as the applied micro­
wave frequency (~0.3 cm' 1 ) . 1 3 " 1 5 This interpretation was 
corroborated by additional esr measurements at Q-band 
frequency (~1.2 cm" ' ) and is consistent with earlier mag­
netic susceptibility studies.2-3 

In contrast Mn(Cp)2 diluted in isostructural d6 host lat­
tices shows low-temperature esr signals very similar to the 
spectra observed for isoelectronic ferricenium cation16 

known to have a 2E2g ground state.16^'9 Low-spin spectra 
are also obtained for Mn(mecp)2 diluted in Mg(mecp)2 and 
Fe(mecp)2. In some cases 55Mn hyperfine structure is re­
solved at 4.20K, as shown in a typical spectrum of 

Mn(mecp)2 in Mg(mecp)2 in Figure lb. All low-spin spec­
tra broadened significantly upon warming and usually be­
came unobservable well below 770K. Magnetic parameters 
(with experimental uncertainties in parentheses) are listed 
in Table I. The observed A \\ and A ± values seem at first 
sight surprisingly small for a Mn(II) complex exhibiting a 
single unpaired electron in an orbital of predominantly 3dj 
character, but the theoretical treatment explains the experi­
mental values rather well, as will be shown below. 

Neglecting excited configurations and using the same 
notation as for the treatment of the related case of Co(cp)2 

(low-spin d7, 2Eig),20 '21 we can write the lowest Kramers 
doublet as 

0* = c02* ± is&z* 

where </>2 and (63 are e2g molecular orbitals and where the 

*2 = C„d„2.v2 + C0 ' H V2 

<PS = C0d„ + CO'03
CP 

coefficients c (cos p) and s (sin p) obey the relationship16-21 

2 cs £ 
c'2 S2 (D 

In this approximation the magnetic tensors exhibit axial 
symmetry and are given by the expressions 

g» = g, + 8cskuV23 

g± = £e(c2 - S2) 

A11 = PC0
2 ( | f 

A1 Pc1 •Id-) 

(2) 

(3) 

In eq 2 and 3 k \\ is an orbital reduction factor20 

K = 1 - C0'
2 (1 - y) 

where 

y = £<</>2
es L£ W > > 

and V2 3 is a vibronic quenching factor20 resulting from re­
duced vibrational overlap between c62 and 03 due to dynam­
ic Jahn-Teller coupling of the E2g electronic state with one 
or several of the e )g metallocene vibrational modes.22 

From the g values ratios f/S and total reduction factors, 
^ I J K 2 3 have been obtained via eq 1 and 2 and are also list­
ed in Table I. As expected the low symmetry distortion pa­
rameter 8 is substantially larger for Mn(mecp)2 than for 
Mn(cp)2, while vibronic quenching is much more pro­
nounced in Mn(cp)2. The limited hyperfine data can be re­
produced from eq 3 with reasonable values for P («162 X 
10-4 cm - 1 , see ref 23), K 0 ( « 0 . 5 , see ref 23), c 0

2 («0.9, see 
ref 16 and 24), and k\ («0.9, see ref 16). The small values 
of IA j I and | A j_ \ result from the fact that the Fermi contact 
term KO substracts from the anisotropic contributions to the 
hyperfine tensor in both of eq 3. Generalization of the ex-
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pressions for the magnetic tensors by taking into account 
mixing with all states resulting from singly excited configu­
rations25 does not alter the above results significantly. 

Our results indicate that free Mn(cp)2 and Mn(mecp)2 
molecules are so close to the low-spin-high-spin crossover 
point that the small intermolecular forces as present in fro­
zen solutions or molecular crystals are sufficient for induc­
ing the observed changes in the electronic ground state con­
figuration. Consistent with ligand field theoretical expecta­
tions the high-spin ground state is found preferentially in 
host systems favoring large metal to ring distances, while 
the low-spin ground state is induced by sandwich matrices 
exhibiting short metal to ring distances. 

We conclude that the most reasonable explanation of the 
anomalous magnetic behavior2-7 of undiluted Mn(cp)2 and 
Mn(mecp)2 is a temperature dependent high-spin-low-spin 
equilibrium. We found that a large part of the Xm(^) 
curve3'4 of Mn(cp)2 below the transition point can even be 
explained by an almost constant energy difference £(6Aig) 
— £(2E2g) « + 0.5 kcal/mol. This interpretation is consis­
tent with our observation that the broad esr signal7 of pure 
Mn(cp)2 at g = 2 disappears completely at 4.20K; this 
band must be due to the thermally populated high-spin 
state. 
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Synthesis and Characterization of a Selenabenzene1 

Sir: 

Thiabenzenes recently have been the subject of thorough 
investigations.2-4 We now report the first example of an au­
thentic selenabenzene, l-pentafluorophenyl-2-methyl-2-

selenanaphthalene (1), and present evidence which refutes 
earlier claims5-6'for stable 10-selenaanthracenes 2 and 3. 

Reaction of 2-selenanaphthalenium perchlorate7 with 
pentafluorophenylmagnesium bromide in ether furnished 
l-pentafluorophenyl-2-seleno-3-chromene (60%) which 
upon methylation with silver tetrafluoroborate-methyl io­
dide gave l-pentafluorophenyl-2-methyl-2-seleno-3-chro-
menium tetrafluoroborate (4), (78%) as a mixture of dia-
stereomers (1/2.8 cis/trans, by nmr).10 Treatment of the 
diastereomeric mixture with dimsyl-^5-lithium (1 equiv) in 
toluene-^8-l,2-dimethoxyethane under nitrogen at low 
temperature" immediately produced a deep burgundy solu­
tion. The 1H nmr spectrum12 indicated that this solution 
contained 1. Notable features were the characteristic up-
field doublet of the 3-vinyl proton and the side bands ac­
companying the methyl singlet due to 77Se-1H scalar cou­
pling. The 77Se-1H side bands clearly attest to the presence 
of a selenium-methyl bond,13 and the high field doublet12 

at u 4.89 reflects the ylide nature of the selenabenzene,14 a 
phenomenon seen with the corresponding thiabenzene, 1-
pentafluorophenyl-2-methyl-2-thianaphthalene (5), for 

which 8 4.76 (d, 37HH = 8 Hz) was observed.3'17 In the 
presence of DMSO-^6, further splitting of the methyl and 
4-vinyl proton signals was observed. This is reasonably at­
tributed to deuterium coupling, the deuterium being incor­
porated by an exchange reaction with the solvent at the 
methyl and 3-vinyl positions.18 

The absorption band responsible for the intense color of 1 
has Xmax 500 nm (DMSO), closely comparable to the Xmax 
480 nm (DMSO) observed for 5 and to the Xmax in the visi­
ble region of other authentic thiabenzenes.3 The structure 
for 1 is also supported by mass spectral data.19 

When the burgundy solution was allowed to stand at 
room temperature, thermal decomposition rapidly took 
place, as evinced by decolorization of the sample to a pale 
orange. Decay of the original sample was confirmed by 1H 
nmr.20 The visible spectrum of 1 was monitored with time 
to afford the interval for 50% decomposition (first half-life) 
of47minat250.21 

It is apparent that 1 has a lifetime between two and three 
orders of magnitude shorter than the sulfur analog 5 under 
the same conditions, 249 hr.3 This order of relative stabili­
ties may be presumed to exist between other structurally 
analogous selena- and thiabenzenes. The instability of 1 
points to the fact that selenabenzenes, unless substituted by 
strongly electron withdrawing groups, are not likely to ex­
hibit sufficient stability to be readily observed. 

In light of these conclusions, the reported5'6 synthesis and 
isolation of 2 and 3 and their description as stable com­
pounds appeared suspect, particularly so since the physical 
properties of these solids were strikingly reminiscent of 
those22,23 displayed by materials previously characterized 
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